

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 5515-5519

Tetrahedron Letters

Synthesis of 3-alkenyl-2-arylchromones and 2,3-dialkenylchromones via acid-catalysed retro-Michael ring opening of 3-acylchroman-4-ones

David S. Clarke, a Christopher D. Gabbutt, a,* John D. Hepworth and B. Mark Heron

^aDepartment of Colour and Polymer Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK

^bJames Robinson Ltd, PO Box B3, Hillhouse Lane, Huddersfield HD1 6BU, UK

Received 27 April 2005; revised 1 June 2005; accepted 10 June 2005 Available online 1 July 2005

Abstract—3-Acylchromones and 3-acylflavones, readily available by acylation of 2'-hydroxydibenzoylmethane with acid anhydrides in the presence of base, undergo efficient conjugate reduction with NaBH₄ in pyridine to give the corresponding chroman-4-ones/flavanones in high yields. The reduction is both regio- and chemoselective. Treatment of the chroman-4-ones with MeSO₃H generates the 3-alkenyl-2-arylchromones by a dehydrative rearrangement initiated by retro-Michael cleavage of the pyranone ring. This reduction—rearrangement sequence can be extended to 2-alkyl-3-alkenoylchromones to generate 3-alkenyl-2-styrylchromones, the first examples of 2,3-dialkenylchromones.

Although 2-styrylchromones are well known and easily accessible from 2-methylchromones¹ other alkenylchromones have been much less investigated. 3-Alkenylchromones have been obtained from the reaction of spiro-annulated chroman-4-ones with formamide acetals,²a and the acid-catalysed rearrangement of 2-alkyland 2,2-dialkyl-3-(hydroxymethylene)chroman-4-ones,²b a reaction, which we have extended to the synthesis of 3,4-dihydro-9*H*-xanthen-9-ones³a and also to 3-isopropenylthiochromone.³b

Reactions of phosphorus ylides with 3-formylchromone provide 3-alkenylchromones. Thus, acylmethylenetriphenylphosphoranes afford the corresponding (*E*) alkenes, ^{4a} whilst benzylidenetriphenylphosphoranes give, predominantly, the (*Z*)-3-styrylchromones. ^{4b} However, the reaction with Ph₂C=PPh₃ is very inefficient, ^{4c} whilst 3-formylchromones react anomalously in a complex 'Michael–Michael–Wittig' sequence with (2,4-dioxobutylidene)triphenylphosphoranes to give benzophenones. ^{4d} (*E*)-3-(4-Oxo-1-benzopyran-3-yl)acroleins are available via hydrolysis of the cycloadduct of 3-form-

Keywords: Conjugate reduction; Chroman-4-ones; Chromones; Flavones; Rearrangement.

ylchromone and H₂C=CHOEt.^{5a} Knoevenagel condensation of cyanoacetic and malonic acids with 3-formylchromone provides, respectively, chromone 3-acrylonitrile^{5b} and 3-acrylic acid derivatives,^{5c} the latter compounds are also accessible from Heck reactions of 3-bromochromones.^{5d} Recently, (*E*)-3-styrylchromones have been obtained by the microwave initiated Knoevenagel reaction of phenylacetic acids with 3-formylchromone.^{5e} Missing from all these routes is an approach which permits access to simple 3-alkenyl-2-arylchromones. Recently, the acid-catalysed condensation of 2'-hydroxydibenzoylmethanes with phenylacetaldehydes has been reported to provide 3-styrylflavones in a one-pot operation.⁶ However, this procedure is limited to arylacetaldehydes and is not amenable to the synthesis of simpler 3-alkenylflavones.

We now report an extension of our earlier work, ^{2b} which provides an entry to 3-alkenylchromones and flavones from the acid-catalysed retro-Michael ring cleavage of novel, readily available 3-aroyl-2-alkylchroman-4-ones. Application of this dehydrative rearrangement to the hitherto unknown 2-alkyl-3-cinnamoylchroman-4-ones is also described. The requisite starting materials, 2'-hydroxydibenzoylmethanes 1, are easily available by *O*-acylation of 2'-hydroxyacetophenone followed by Baker–Venkataraman (BV) rearrangement under standard

^{*} Corresponding author. Tel.: +44 (0) 113 343 2936; fax: +44 (0) 113 343 2947; e-mail: c.d.gabbutt@leeds.ac.uk

Scheme 1. Reagents and conditions: (i) ArCOCl, pyridine, rt; (ii) KOH, pyridine, rt, then AcOH; (iii) R = H: Ac₂O, NaOAc, Δ ; R = Me: (EtCO)₂O, Et₃N, Δ ; (iv) NaBH₄, pyridine, rt, 52–85%; (v) (PrⁱCO)₂O, Et₃N, Δ ; (vi) MeSO₃H, rt.

conditions.⁷ Acylation of the 1,3-diketones 1 with either acetic or propionic anhydride gives the 2-alkyl-3-aroylchromones 2 in high yields.^{8a-c} None of the isomeric chromones 3 were formed. Smooth and efficient conjugate reduction 2→4 was accomplished with NaBH₄ in pyridine (Scheme 1).⁹ In most cases the 3-acylchroman-4-ones 4 were found to exist exclusively (NMR) as the *trans*-diketo tautomers 4Aa–Ae and 4Ah–k. However, reduction of 2f and 2g provided the enol tautomers 4Bf and 4Bg as the sole products; evidently conjugation of the *ortho* nitro group with the C-4 carbonyl facilitates intramolecular hydrogen bonding, so favouring the enol tautomer.

The acylation of 1 was also successful with more hindered anhydrides thus **5A** (78%) was obtained from isobutyric anhydride.

Treatment of chroman-4-ones 4A with TsOH in hot toluene effected rearrangement to 3-alkenylchromones 6 albeit in low yields. It was found that the conversion $4A \rightarrow 6$ proceeded more efficiently and in high yield simply by stirring the reactant in neat MeSO₃H at room temperature. 10a Formation of the alkenylchromone proceeded stereoselectively since chroman-4-ones 4Ac and 4Ae provided only **6c** and **6e**. ^{10b} Interestingly, the furan derivatives 4i,k rearranged to the corresponding alkenylchromones 6i,k without complication. The rearrangement of **4A** to the alkenylchromones **6** occurs via retro-Michael cleavage of the pyranone ring, followed by cyclisation and dehydration. Deprotonation of the intermediate carbocation affords the product (Scheme 2).¹¹ Surprisingly, attempts to effect rearrangement of the fully enolised diketones **4Bf** and **4Bg**, led only to their complete recovery, even after prolonged reaction times at 75 °C. The steri-

Ar and R as defined in Scheme 1

cally hindered chromanone **5A** could not be induced to rearrange; exposure to MeSO₃H gave only the enol tautomer **5B** as a stable crystalline product [80%, δ (CDCl₃) 16.07 (s, OH), 4.98 (d, J = 3.4 Hz, H-2)].

A simple extension of this methodology permits access to 2,3-dialkenylchromones, of which no examples have been reported previously. Thus, the esters 7 were obtained from 2'-hydroxyacetophenone by acylation with alkenoyl chlorides in MeCN under DBU catalysis. We found these conditions to be much more satisfactory than the existing literature procedure. ^{12a} Aliphatic-BV rearrangement of 7a–d to 8a–d was accomplished by

Bu'OK in THF, following the literature procedure. ^{12b} Acylation of 8a,b with Ac₂O or (EtCO)₂O effected regiospecific cyclisation to the 3-alkenoylchromones 9e-h. Subsequent reduction with NaBH₄-pyridine proceeded in an entirely chemo- and regiospecific manner, with conjugate addition of hydride to the chromone ring, to give 10e-h. When exposed to MeSO₃H, the 2-methylchroman-4-ones 10e,f rearranged smoothly to the dialkenylchromones 11i,j (Scheme 3), which were isolated in reasonable yields (48–60%) by simple aqueous work-up and recrystallisation. Rearrangement of the 2-ethylchroman-4-ones 10g,h proceeded to give 12i,j as the only identifiable products (cf. 4Ac→6c).

O OH
$$R^2$$
 (ii), (iii) For 8a and 8b

7

$$\begin{cases}
a R^1 = Ph, R^2 = H \\
b R^1 = 2 \cdot NO_2 C_6 H_4, R^2 = H \\
c R^1 = Me, R^2 = H \\
d R^1 = R^2 = Me
\end{cases}$$
9
$$\begin{cases}
e R^3 = Me, R^4 = H \\
f R^3 = Me, R^4 = NO_2 \\
g R^3 = Et, R^4 = H \\
h R^3 = Et, R^4 = NO_2
\end{cases}$$
for 11 and 12 $\begin{bmatrix} i R^4 = H \\ j R^4 = NO_2 \end{bmatrix}$

Scheme 3. Reagents and conditions: (i) R^1R^2C =CHCOCl, DBU, MeCN, 0 °C; (ii) KOBu t , Bu t OH, THF, 0 °C; (iii) AcOH; (iv) R^3 = Me: Ac₂O, NaOAc, Δ , 1 h; R^3 = Et: (EtCO)₂O, NEt₃, Δ , 1 h; (v) NaBH₄, pyridine, rt, 60–72%; (vi) MeSO₃H, rt, 1–2 h.

8c,d
$$Ac_2O, \Delta$$
NaOAc

NaOAc

O OH R

Me

13

R = H

NaBH₄, pyridine, RT

OAc O O

Me

16

Ac₂O

Me

17

Scheme 5. Reagents and conditions: (i) hv, PhH, cat. I₂, 36 h; (ii) BF₃·OEt₂ (6 equiv), Cl(CH₂)₂Cl, Δ, 24 h.

Interestingly, acylation of **8c** with Ac₂O provided three new compounds, which could be readily separated and identified as chromones **14a** and **15a** and the pyranone **16a**,¹³ in the ratio 1:3:5, respectively. The constitution of **15a** (and hence **14a**) was confirmed by conjugate reduction to **17**. Attempts to effect rearrangement of the latter under a variety of conditions failed to provide a tractable product.

The chromones 14 and 15 are derived from the non-regiospecific cyclisation of the triketone 13 (Scheme 4), whilst 16a (from 8c) results from conjugate addition of the enol(ate) to the alkenoyl side chain. Acylation of 8d similarly provided a mixture of 14b and 16b in a 1:1 ratio. We did not observe any of the analogous pyranone 16 (R = Ph, H replaces 6-Me) from reaction of 8a with Ac₂O; presumably 1,4-addition is retarded because of increased conjugation in this system. No reactions of 8, which provide 3-acyl-5,6-dihydropyran-4-ones have been reported previously. 14

The alkenylchromones offer considerable scope for the synthesis of fused systems either by cycloaddition, 3,15 electrocyclisation or electrophilic cyclisation. Examples of the latter two annulation protocols with **6b** are presented in Scheme 5. Thus, photodehydrocyclisation provided the benzo[c]xanthone 18^{16a} (70%). Electrophilic cyclisation to the indenopyran 19^{16b} (40%) was initiated with BF₃-etherate, providing an expedient approach to these systems. Surprisingly, compound **6h** failed to react under these conditions. Further studies of the scope and limitations of this reaction are underway.

In summary, a new route to the hitherto difficultly accessible 3-acyl-2-substituted chroman-4-ones is described. Rearrangement of these compounds provides 3-vinyl- and 3-prop-2-enyl-derivatives of flavones, 2-(heteroaryl)chromones and 3-alkenyl-2-styrylchromones. Reactions of the new compounds will be described more fully in due course.

Acknowledgements

We thank Lancaster Synthesis for support (D.S.C.) and the EPSRC for access to the Mass Spectrometry Service, University of Wales Swansea.

References and notes

 Ellis, G. P. In *Chromenes, Chromanones and Chromones*; Ellis, G. P., Ed.; Wiley-Interscience: New York, 1977, pp 581–631.

- (a) Kabbe, H.-J.; Widdig, A. Angew. Chem., Int. Ed. Engl. 1982, 21, 247–256; (b) Gabbutt, C. D.; Hepworth, J. D. Tetrahedron Lett. 1985, 26, 1879–1882.
- (a) Gabbutt, C. D.; Hepworth, J. D.; Urquhart, M. W. J.; Vazquez de Miguel, L. M. J. Chem. Soc., Perkin Trans. 1 1998, 1547–1553; (b) Gabbutt, C. D.; Hepworth, J. D.; Heron, B. M. J. Chem. Soc., Perkin Trans. 1 2000, 2930– 2938
- (a) Abdou, W. M.; Khidre, M. D.; Mahran, M. R. *Phosphorus, Sulfur* 1991, 61, 83–90; (b) Sandulache, A.; Silva, A. M. S.; Pinto, D. C. G. A.; Almeida, L. M. P. M.; Cavaleiro, J. A. S. *New J. Chem.* 2003, 27, 1592–1598; (c) 3-(2-Phenylstyryl)chromone is more efficiently obtained from hydrolysis of the cycloadduct of 3-formylchromone and diphenylketene, Eiden, F.; Breugst, I. *Chem. Ber.* 1979, 112, 1791–1807; (d) Langer, P.; Holtz, E. *Synlett* 2003, 402–404.
- (a) Ghosh, C. K.; Tewari, N.; Bhattacharyya, A. Synthesis 1984, 614–615; (b) Nohara, A.; Kuriki, H.; Saijo, T.; Ukawa, K.; Murata, T.; Kanno, M.; Sanno, Y. J. Med. Chem. 1975, 18, 34–37; condensations of 3-formylchromone with acetylacetone and ethyl acetoacetate have also been described, Jones, W. D.; Albrecht, W. L. J. Org. Chem. 1976, 41, 706–707; (c) Nohara, A.; Kuriki, H.; Saijo, T.; Sugihara, H.; Kanno, M.; Sanno, Y. J. Med. Chem. 1977, 20, 141–145; (d) Davies, S. G.; Mobbs, B. E.; Goodwin, C. J. J. Chem. Soc., Perkin Trans. 1 1987, 2597–2604; (e) Silva, V. L. M.; Silva, A. M. S.; Pinto, D. C. G. A.; Cavaleiro, J. A. S.; Patonay, T. Synlett 2004, 2717–2720.
- Lokshin, V.; Heynderickx, A.; Samat, A.; Pepé, G.; Guglielmetti, R. Tetrahedron Lett. 1999, 40, 6761–6764.
- 7. Wheeler, T. S. Org. Syn., Coll. Vol. 1963, 4, 479.
- (a) Huffman, K. R.; Burger, M.; Henderson, Jr., J. A.; Loy, M.; Ullman, E. F. J. Org. Chem. 1969, 34, 2407–2414;
 (b) Huffman, K. R.; Ullman, E. F. US Patent 1969, 3 444 212; Chem. Abstr. 1969, 71, 38807;
 (c) Baker, W.; Harborne, J. B.; Ollis, W. D. J. Chem. Soc. 1952, 1294–1302.
- We have previously noted the efficacy with which conjugate reductions of activated chromones proceed under these conditions: Gabbutt, C. D.; Hepworth, J. D.; Urquhart, M. W. J.; Vazquez de Miguel, L. M. J. Chem. Soc., Perkin Trans. 1 1997, 1819–1824; Reports of 3-aroylchroman-4-ones are scarce. Apart from the present procedure involving conjugate reduction of 3-acylchromones (i.e., 2 and 9→4 and 10, respectively), the only other convenient route involves the 1,4-addition of R₂CuLi to 3-acylchromones; Saengchantara, S. T.; Wallace, T. W. Tetrahedron 1994, 46, 3029–3036.
- 10. (a) Typical procedure: 2-(4-nitrophenyl)-3-vinylchromone 6d. NaBH₄ (1.89 g, 0.05 mol) was added in a single portion to a magnetically stirred solution of 2-methyl-3-(4-nitrobenzoyl)chromone 2d^{8b,c} (15.46 g, 0.05 mol) in pyridine (125 ml). The mixture became red and was allowed to stir until all the NaBH₄ had dissolved. After 2 h the mixture was diluted with water, acidified with concd HCl and extracted with EtOAc (3 × 100 ml). The combined extracts were washed with 2 M HCl, water and then dried

(Na₂SO₄) and evaporated to give trans-4Ad (12.45 g, 80%) as pale yellow crystals from MeOH, mp 164–166 °C. $v_{\rm max}$ (Nujol)/cm⁻¹ 1695, 1665, 1603; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 1.50 $(3H, d, J = 6.4 Hz, 2-CH_3), 4.60 (1H, d, J = 11.5 Hz, H-3),$ 5.08 (1H, dq, J = 11.5, 6.4 Hz, H-2) 7.01-8.36 (8H, m, Ar-H). Compound 4Ad (7.78 g, 0.025 mol) was added to MeSO₃H (40 ml) and the mixture kept at rt until the reaction was complete (ca. 2 h). Following aqueous workup the product was extracted into EtOAc, to give chromone 6d (6.95 g, 95%) as an off-white microcrystalline powder mp 147–149 °C from MeOH, $v_{\rm max}$ (Nujol)/cm⁻ 1650, 1606. $\delta_{\rm H}$ (CDCl₃, 400 MHz) 5.56 (1H, dd, J = 9.6, 4.4 Hz, -CH=CHH) 6.34-6.39 (2H, m, CH=CHH and CH=CH₂), 7.44–7.74 (3H, m, Ar-H), 7.88–7.94 (2H, m, 4- $NO_2C_6H_4$) 8.32 (1H, dd, J = 8.0, 1.6 Hz, H-5), 8.36–8.41 (2H, m, 4-NO₂C₆H₄) Other 3-alkenylchromones were prepared similarly. Yields (%) 6a (70), 6c (87) 6d (95), 6e (62) **6h** (30), **6i** (40), **6j** (66), **6k** (60); (b) Representative spectral data for trans-2-(4-methylphenyl)-3-propenylchromone **6e**: $\delta_{\rm H}$ (CDCl₃, 400 MHz) 1.79 (3H, dd, J = 6.7, 1.7, Hz, =CHC H_3), 2.45 (3H, s, CH₃), 6.11 (1H, dq, J = 15.7, 1.7 Hz, CH=CHCH₃), 6.89 (1H, dq, J = 15.7, 6.7 Hz, CH=CHCH₃), 7.30–7.44 (4H, m, Ar-H), 7.58– 7.64 (3H, m, Ar–H), 8.27 (1H, dd, J = 8.0, 1.5 Hz, H-5); δ_C 19.76, 21.53, 117.76, 117.86, 121.39, 123.50, 124.75, 126.16, 128.93, 129.51, 130.52, 132.67, 133.19, 140.69, 155.44, 161.88, 177.73; CI-HRMS [M+H]⁺ 277.1223, $C_{19}H_{16}O_2+H^+$ requires 277.1221.

- Similar mechanisms have been reported previously; see: Dean, F. M.; Murray, S. J. Chem. Soc., Perkin Trans. 1 1975, 1706–1711, and Refs. 2b and 3.
- 12. (a) Although 7a,b could be prepared by standard procedures (with pyridine or NEt₃ as catalyst), compounds 7c (57%) and 7d (63%) could only be obtained satisfactorily by the DBU procedure; (b) Kraus, G. A.; Fulton, B. S.; Woo, S. H. J. Org. Chem. 1984, 49, 3212–3214.
- 13. Selected ¹H NMR data for **14a**, **15a** and **16a**: $\delta_{\rm H}$ (CDCl₃, 250 MHz) compound **14a** 1.97 (3H, dd, J = 7.0, 2.5 Hz, –CH=CH-CH₃), 2.42 (3H, s, –COCH₃). Compound **15a** δ 2.66 (3H, s, 2-CH₃), 2.00 (3H, dd, J = 6.5, 2.5 Hz,

- CH=CH-C H_3). The low-field shift of the 2-CH₃ group in **14a** and **14b** is characteristic for 3-acyl-2-methylchromones, see: Ghosh, C. K.; Pal, C.; Maiti, J.; Sarkar, M. *J. Chem. Soc., Perkin Trans. 1* **1988**, 1489–1493, Compound **16a**; δ_H (CDCl₃ 250 MHz) 1.54 (3H, d, J = 6.5 Hz, 6-CH₃), 2.18 (3H, s, OCOCH₃), 2.25 (3H, s, 2-CH₃), 2.40–2.65 (2H, m, H-5), 4.57–4.72 (1H, m, H-6), 7.10–7.61 (4H, m, Ar–H).
- 14. The only reported example of direct formation of a pyranone ring from 1,3-diketones 8 concerns the cycload-dition of pyrrolidinocycloalkenes to (E)-1-(2-hydroxyphen-yl)-5-phenylpent-4-ene-1,3-dione 8a, which provides cycloalkeno[a]- and cycloalkeno[a]xanthones, Letcher, R. M.; Yue, T.-Y.; Chiu, K.-F.; Kelkar, A. S.; Cheung, K.-K. J. Chem. Soc., Perkin Trans. 1 1998, 3267–3276.
- 15. The cycloaddition chemistry of chromones has been reviewed, Ghosh, C. K.; Ghosh, C. Indian J. Chem., Sect. B 1997, 36, 968–980; For recent examples involving 3-alkenyl(thio)chromones see: Ref. 3b and Gabbutt, C. D.; Hepworth, J. D.; Heron, B. M.; Pugh, S. L. J. Chem. Soc., Perkin Trans. 1 2002, 2799–2808; Pinto, D. C. G. A.; Silva, A. M. S.; Almeida, L. M. P. M.; Carrillo, J. R.; Díaz-Ortiz, A.; de la Hoz, A.; Cavaleiro, J. A. S. Synlett 2003, 1415–1418.
- 16. (a) Photochemical electrocyclisations to these ring systems are scarce, however the cyclisation of 2'-[(E)-styryl]flavone has been reported; Parthasarathy, M. R.; Grover, N. Indian J. Chem. Sect. B 1991, 30, 440-441, Representative spectral data for 3-methoxy-7*H*-benzo[*c*]xanthen-7-one **18**; $\delta_{\rm H}$ (CDCl₃, 250 MHz) 3.99 (3H, s, OMe), 7.24–7.47 (3H, m, Ar-H), 7.62-7.77 (3H, m, Ar-H), 8.26 (1H, d, J = 8.7 Hz, H--5, 8.37 (1H, dd, J = 7.8, 1.5 Hz, H--8),8.59 (1H, d, J = 8.7 Hz, H-6); (b) Representative spectral data for 8-methoxy-10-methyl-10H,11H-indeno[1,2-b][1]benzopyran-11-one **19**, $\delta_{\rm H}$ (CDCl₃, 250 MHz) 1.63 (3H, d, J = 7.4 Hz, 10-Me), 3.91 (3H, s, OMe), 4.03 (1H, d, J =7.4 Hz, H-10), 7.01 (1H, dd, J = 8.4, 2.2 Hz, H-7), 7.12 (1H, d, J = 2.2 Hz, H-9), 7.65 (1H, td, J = 8.4, 2.2 Hz, H-9)4), 7.73-7.74 (2H, m, H-2, H-3), 7.75 (1H, d, J = 8.4 Hz, H-6), 8.34 (1H, dd, J = 8.4, 2.2 Hz, H-1).